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ABSTRACT

In this study the exact expression for the input impedance of a small
loop of uniform electric current is derived for the case when the loop
is immersed in an infinite, homogeneous, cold, anisotropic plasma.
Due to the nature of the exact expressions, the loop impedance is
calculated by two methods of approximation for the case where the
imposed steady magnetic field is normal to the plane of the loop. The
first method uses the quasi-static approximation, for which a first
order correction term is.also calculated. The second approximate
method involves the assumption that the medium is uniaxial.

The loop impedance is also calculated under the uniaxial appro-
ximation for the case where the imposed steady magnetic field is
parallel to the loop.

A discussion of the experimental techniques in measuring the loop
impedance is given. A brush-cathode discharge chamber was used
in the experimental program.

The theoretically derived impedance formulae are numerically
evaluated for a wide range of the plasma parameters and the measured
loop impedance is compared to the theory. There is good general

agreement between the theoretical and measured loop impedance.
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CHAPTER 1 INTRODUCTION

A considerable amount of attention has been directed recently to the study
of the anisotropic magneto-plasma. Extensive studies have been carried out
regarding the electromagnetic properties of electric dipoles in such media,
(Balmain, 1963, Mittra and Duff, 1965).

Some initial studies of the electromagnetic properties of an infinitesimal
loop of electric current have been made' (Wu, 1963, Duff, 1965). The radia-
tion resistance of an infinitesimal magnetic dipole has been calculated by
Weil; - WAIShI(1965).

It would be most useful to obtain expressions for the input impedance of a
loop immersed in an anisotropic plasma. Because of the complex nature of
solving Maxwell's equations for a current distr’ibut‘ién, the loop in this study
was assumed to be small and an uniform current distribution has been assumed.
The plasma is also assumed to be cold to avoid the complexities of dealing with
the acoustic phenomena of a warm plasma.

In Chapter 2 the medium is described and the general impedance formula
for the steady magnetic field normal to the loop is der‘ived‘by means of the in-
duced e. m.f. method. The loop of current is described and the Fourier trans-
formed Maxwell's equations are solved. The impedance of the loop is then
given in terms of the transformed fnagnetic field.

In Chapter 3 the quasi-static approximation is introduced to facilitate the

solution of the loop impedance. Chapter 4 gives a first order correction term



to the quasi-static result.

Chapter 5 introduces the use of the uniaxial approximation and the loop im-
pedance is derived under these conditions,

In Chapter 6 the steady magnetic field is turned 90° so that it is parallel to
the loop and the impedance is again calculated using the uniaxial approximation.

Chapter 7 deals with construction and operation of the brush cathode plas-
ma chamber and all the associated equipment used in the experimental deter-
mination of the loop impedance.

Chapter 8 gives a description of the numerical techniques used to evaluate
the theoretical formulae derived in the earlier chapters.

Chapter 9 gives a discussion of the theoretical results and the kind of re-
sults that should be expected in the experimental measurements.

In Chapter 10 the computed numerical results for a wide range of electron
density and imposed steady magnetic field are presented and discussed.

Chapter 11 presents the loop impedance measured under a variety of plas-
ma conditions, along with a discussion of the results. All of these numerical
results are presented on Smith Charts for the sake of clairty.

Finally Chapter 12 presents the conclusions of the study.




CHAPTER 2 DERIVATION OF THE EXACT THEORY;
73'0 NORMAL TO THE LOOP

2.1 The Magneto-Ionic Medium

The medium that will be considered in this study is known as an anisotro-
pic plasma. Certain assumptions regarding the medium have been made. It is
considered to be electrically neutral, that is the electron density is equal to the
ion density. In addition, a steady D.C. magnetic field, Eo’ is assumed to
exist in the positive 2-direction of the Cartesian co-ordinate system. The
ions, being so much heavier than the electrons, are considered to be station-
ary and the electrons move with velocity v due to the forces exerted by the
D. C. magnetic field, Eo' and the r.f. electric field, E The force due to the
r.f. magnetic field is relatively small and is neglected. If one assumes the
medium to be homogeneous and infinite in extent and solves the force equation
for the electrons, including frictional forces due to electron collisions with
gas molecules and ions, one obtains the following familiar constitutive rela-
tions for the medium.

B:gOEE and E:/,{oﬁ (2.1.1)

The relative permittivity tensor K is

K, Ky 0
_ oy 2. 1.
K S 0 (2.1.2)
0 0 K



h K. =1 XU
where 17 - > 2
U -Y
X
=1 o —
Ko U
XY
K =
11 2 .2
U -Y
2
) 2
N 2 Ne
and X = > wN —mé
w 0
w
H _ eBo
Y= w “H™ m

The following is a list of symbols used throughout.

€
1"

Bo =

Rationalized M. K. S. units are used throughout this study.

u=1-jz, zZ = %
r.f. radian frequency.

magnetic permeability of free space.
dielectric constant of free space.

w% = free space wave number,
electron density.

magnitude of electron charge.

electron mass.

collision frequency of electrons.

D. C. magnetic flux density.

Maxwellls first and second equations are

(2.1, 3)

(2.1.4)

(2.1.5)

(2.1.6)

(2.1.7)

(2.1.8)




T xH = ngol_?_ﬁ (2.1.9)
V xE = —jw/u(.)H (2.1.10)

The r.f. fields are assumed to be monochromatic and an ejwt time convention
is used. J is the impressed electric current density of the source in the medi-
um.
2.2 Lorentz' Reciprocity Theorem for an Anisotropic Medium

In this section the ""induced e. m. f." method of impedance calculation will
be derived from Lorentz' relation, (Harrington, 1961).

Consider sources (Ea’ Mé) which produce fields (Eé' Ea) in a medium
characterized by the constitutive parameters (%I_{a’/ub)' Now consider a sec-

ond set of sources and fields in a second medium using subscript '"'b". If both

sets of sources are of the same frequency, w, then Maxwell's equations are

ﬁ‘xﬁa = -jw/uoﬁa-ﬁa (2.2.1)

§X—H_a = jwfo?af.a+33 (2.2.2)
and ?x_E—l'b = _jw/“éﬁb_ﬁb

VXH = jw gbeEb+Jb (2. 2.4)

Using a well known vector identity, it is easily shown that

pEy)

|
WI
ol

Ve (H xE -H xE) = jug (E,-K_E_-E_- (2.2.5)

a a
( bJ E' b)+(Ha-Mbe Mai)

Taking a volume integral of both sides of (2. 2.5) and invoking the divergence

theorem we have



JJ\ H XE H xE nda. = _]Q)E[/ -Ea- KbEb) dv
jﬂ(E J Ea° Jb Ha Mb Hb Ma) dv (2.2.6)

where X is the surface of the volume V, and 9 is the outward pointing unit vec-
tor normal to the surface 2.
If the volume V excludes all the sources, then the second volume integral

on the right hand side of (2. 2.6) is zero.
Thus,

— — —— — A . — —_— — —_— ——
jf (HaXEb-beEa)- nda = wao//[(Eb- KaEa-Ea- KbEb) dv (2.2.7)
= 14

The right hand side of (2. 2. 7) will be zero if

E'‘RKE =E ‘K E (2. 2. 8]
Eb KaEa Ea bEb ( 81
= T= = = T= —
i = (2. 2. 9)
that is Eb KaEa Ea KbEb { 9)
= T= — — T= T—= T

, 2. 2.10)
but Ea KbEb (B Kb Ea) (2 0)
. ) =T = ‘
Thus, (2.2.8) will be true if Kb = Ka (2.2.11)

This will be true if the direction of the magnetic field is of the opposite

sense in medium ''a" as compared to medium "'b'"'. In this event
f (H xE, -H, xE )-8da = 0 (2.2.12)
“a” b b Ta B T
>

If we assume that the radiation condition is satisfied, then the surface integral
of (2.2.12) reduces to an integral over the surface of the sources. -Imposing

the boundary conditions for a perfect conductor,




J = hxH (2.2.13)
= -ﬁxE (2.2.14)

and (2. 2.12) becomes /] E 3 H I\Za) da =0 (2. 2.15)

where z“ is the surface of the sources.
If the currents are assumed to be excited by voltages across a very small

gap of width #, then
M = -BxE_ = _QXT (2. 2. 16)
and 5{ H -dd=1 = 2n8H (2.2.17)

The wire has a radius of §. Now since r/fxE is zero except at the gap,

S / /f e
H -M_d_ ) (2. 2.18)

where g'' is the surface of the gap. But in this case da = 2m8€ (2.2.19)

so that ﬁH M d = -V I (2. 2.20)

Thus, (2.2.15) becomes f/_ T (2.2.21)

Setting E 3 E (2. 2.22)
_ V

We have Zin = —= - — fE - Jda (2. 2. 23)

It must be remembered that E must be calculated under the conditions of re-
versed steady magnetic field, as shown by (2. 2.11). However, it will be de-

monstrated later that the electric field very near to the sources is not a func-



tion of the sense of the D. C. magnetic field and so we can calculate the input
impedance of the source in the magneto-plasma using (2. 2. 23), without revers-
ing the sense of the magnetic field.
2.3 The Loop Geometry and the Current Density

The loop of electric current used in this chapter is assumed to be in the
x-y plane. It carries a uniform current I. The radius of the loop is /do and the
radius of the filamentary conductor is §. Because the radius 8 is very small,

the current density is mathematically approximated by a line source as

T = 218~ )8 (2) (2.3.1)

where 8(,0— /o) and g(z) are the Dirac-Delta Functions and ;2 is the unit direction
vector tangent to the loop in the x-y plane. It should be noted that the conduc-
tor radius, 8§, cannot be set equal to zero throughout the study, because, as
will be seen, the integral representation for the impedance would not converge.
The loop radius fo is assumed to be very small in terms of free-space wave-

lengths. That is k f & 1 (2.3.2)
olo

2.4 The Impedance Expression for a Small Loop
If the expression for the loop current J is substituted into the impedance

expression of {2, 2.23) one obtains,

Zin = - II—Zf[E Qg(f-fo)S(z) da (2.4.1)
ZI

that is, Zin = - ll fJ‘Z\ES(f fo)S(zl)(’dfdé (2. 4. 2)
Zl




where f and ¢ and the usual cylindrical co-ordinates. Using the property of the

Dirac-Delta Function and integrating on P one obtains,

2
Zin = - % 2-E8(z)as (2. 4.3)

(o)

which is a line integral, where

dl = 2]05 g (2. 4. 4)

Thus, (2.4.3) becomes
. 1 = -
Zin = Tf E-dl (2.4.5)
(o]

Applying Stokes' theorem this becomes

Zin = - %Jﬂ?xﬁ-a (2. 4.6)

where 3" is the area enclosed by the loop.

Using (2.1.10), Maxwell's second equation, we have

jw _
IﬂbﬂH- dz (2.4.7)
Z|II

or Jw/uojj H_pdpag (2. 4. 8)

In this expression Hz must be calculated at z=§, the radius of the filamental

Zin =

wire in order that (2. 4. 8) yield a finite result, as discussed in the previous
section.
Equation (2. 4. 7) is the familiar expression for the impedance of a "mag-

netic dipole.! It is clear that the H-field normal to the plane of the loop must
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be obtained for the impedance calculation.
2.5 The Fourier Transform Pair and the Transformed Maxwell's Equations

The following equations define the Fourier transform pair to be used in

this study.
+ 0
~ _
>~ _ —_— e _ e 3
AK) = JﬁA(r)e er 3, (2.5.1)
-0 +0b
S 1 A A '-1:.— 3
Ar) = 3 ffA(k)eJ 'k (2.5.2)
(2m)
—-ad
~ ——
Here A (k) is '""'the Fourier transform of the vector A(r),"
where T = xRtyyrz? (2.5.3)
and k = k1§+k2<}+k3’z‘ (2. 5. 4)

If one assumes that there are slight losses in the medium, so that the
fields at infinity are zero, and the radiation condition is satisfied, Maxwell's

transformed equations are

— o

jkxE = -=jw/gH (2.5.5)
_ o~ A
jkxH = +jw EOKE+J (2.5.6)

The advantage of introducing the Fourier transform is now apparent because
(2.5.5) and (2.5.6) are purely algebraic equations as opposed to the differen-
tail-equation form of Maxwell's equations in real space. The transformed E
and H fields are now expressed in the Fourier domain as functions of k.

It is worth noting that K was not affected by the transformation because the

medium is assumed to be infinite in extent, and homogeneous.




Solving (2.5.5) and (2.5.6) for H yields,

==g — =_ld
LH = -jkxK J

E—
when L is a tensor operator and

L = (kxK kxtko'T )

Here I is the identity operator and ko is the free space wave number. kx is an

operator represented by

_ Ry Ky
Ckx = k3 0 -k1
—kZ kl 0
Solving (2.5.7) one obtains
~ —-1 . Yad
H= -jL kxK ' J
Inverting T one obtains
[‘ﬁ +k02=1\=I +ko4ﬁ ]
-f-l B 0 1 2
- 2 2 4
ko (atko btko c)

Before proceeding any farther, the cylindrical co-ordinates of k are defined as

k1 =K Cosf
kz': K Sinf
2
and therefore, KZ = k1 +k22
It == 2 2 —
Im (2.5.11) - - i No = (K, K tK k )kkT
Y g 1] 1 o 3
and N} has components Ny .° 7
.‘.’ .4 1S . . . 2 2 2 2
= - { ¥ - -
where Nl, 11 KOIAI kl (Kl K11 )

11

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)

(2.5.12)

(2.5.13)

(2.5.14)

(2. 5..15)

o~
~—

(2.5.16)



Np12° 'jKoKl1k32'(K12"K112)k1k2

Ny 13 = "ER R R HIK Ky Rk

Ny, a1° J'K0K11k32“(K12'K112)1‘1k2

Ny 22 ° "KoKlkZ'kzz(Klz'Kllz)

Ny o3 7 "R B KRy -IK Ky kK,

Ny gy ="K K R kg -IK Ky Kok

Ny 3,7 "R K KRR KKK,

Ny 337 '(Klz“’Kl12)K2“‘7‘K0K1k32
and ﬁz = KO(KIZ—KHZ)I=

In the denominator, which is the determinant of f

2 2 2.
a= K"K KHK k)
2 2.2 2 2
b= (K T-K KWK K (k)
. 2 2
and c.= —KO(K1 -Kll )

It should be noted that -ﬁoi‘; = -6—, the zero operator.

tion, (2.5.10) becomes

~

— —_ e 1D

ko Nz]ka J

2 4
(atko btko c¢)

and using (2. 5.2) to invert the transformed H field

Thus,

(2. 5.

(2.

upon

12

.5.17)

.5.23)

.5.26)

.5.27)

.5.28)

substitu=-

.5.29)
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H =%H-=
zZ

N>
®
W
=
— nl .}
Al
~|
H |
[o N
w
.
~
o
(98]
8

2.6 The Transformed Current Density
All of the algebraic factors of (2.5.29) have been given except for the

transformed current density,

w -
T =[[[218(f- ﬂ))S(z)e-jk. rad, (2.6.1)
-0

Expressing k and r in polar co-ordinates where

Using (2.5.1)

x = fCosgS (2. 6.2)
y=p Sing (2.6.3)
k1 =K Cos}’ (2.6.4)
k2= KSin7 (2.6.5)
) A A
and setting 4 = -R Sin gty Cos # (2.6.6)

We have

2
-1 JJ(-Q Sin g+§ Cos ;zﬁ)éi(f—fo)S"(z)e'j[“lp COS(¢'7)+k3z]fdfd;5dz (2.6.7)
(o]

Integration on z and then onf, and using the properties of the Dirac-Delta
Function yields

2w
~ . . ’ .
T = Ifoj (-2 Sin $+9 Cos e £, C°S(’5‘f)dgs (2.6.8)
0
A familiar identity that will be useful in this study is
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2m
Z'rr(j)an(z) :f Nt Iz Cos by, (2.6.9)

o
J (z) is the Bessel's function of the first kind of integer order, n.
n

Expanding (—9{ Sin ;5+3/> Cos $) into exponential representation allows the use

of (2.6.9) to evaluate (2.6. 8).
The results is

~
J

= anIfOJl (Kﬁ))[% Sin§ - QCOsf] {2.6.10)
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CHAPTER 3 THE QUASI-STATIC APPROXIMATION:
Eo NORMAIL TO THE LOOP

3.1 Introduction
~ g
Once H is determined as in (2.5.29), the inverse Fourier transform of H
will yield H by using (2.5.30). Upon examination of the denominator,
2z

2
(atko b+ko4c), of (2.5.29), where

2 2.2

2 2 2. 2 2 2
K™K _k,“Jko {(Kl K, KK K (K )}

2
(atko b+ko4c) = [-kT(K

1 11

+ko4{-KO(K12—K112)}] (3.1.1)

it becomes evident that the difficulty of solving (2.5.30) is extensive and some
kind of approximation must be introduced.

It is important to recall that, according to (2. 2.23), the 2_directed mag-
netic field will be integrated over the area enclosed by the loop, and thus, we
are essentially interested in the near field representation of HZ.

The approximation that will be used to facilitate the solution of (2.5.30) is
known as the quasi-static approximation, which, in essence, yields the low
frequency approximate solution of the 2_component of the magnetic field. How-
ever, a difficulty arises when one considers that the constitutive parameters
Kl’ KO, and K11 are frequency dependent, thus, one must assume that a con-
stant permittivity ten;or, Eof’ is a valid description of the medium at low fre-

duencies. Since ko2 = wzluoeo, taking the limit of (2.5.29) as ko approaches

zero corresponds to a low frequency approximation. One must remember that
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the radius of the current loop is assumed to be very small compared to the
free-space wavelength, so it is a reasonable approximation to consider that
the wavelength approaches infinity as far as the near fields of this very small
loop are concerned.

One might well ask if it is true that the wave-length in the plasma ap-
proaches infinity, especially considering the fact that the dispersion surfaces
in an anisotropic plasma are anisotropic too, and infinite in some directions in
a lossless plasma. The answer is found by assuming very slight losses in the
medium. Under these conditions, the dispersion surfaces are finite and let-
ting ko2 approach zero corresponds to assuming an infinite wavelength in all
directions in the plasma.

2 ‘
Now letting ko approach zero in (2.5. 30), one obtains

H = 3
0.5, (2m)

J (3.1.2)

w —
A AT lexK 1T JKP Cos(F-frtkszly s qi
Z .
J\ a
)

< 0
3.2 The Evaluation of the Quasi-Static Impedance
Upon evaluation of the integrand of (3.1.1) one obtains the following form.

1'0 TPyl KP )ej[KP Cos(f"’é)‘*kf]dxd;dk
H o fJ‘J’ 1 o 3
“Q.s Z'n') 2%

(K2+k 2)

(3.2.1)
3

The fact that none of the plasma parameters appear in this quasi-static
representation is important. One would, therefore, expect that the impedance

calculated from this HZ will be the impedance of a small loop in free
Q.S.

[P SRV B RV IR PR S L




space. That this is the case will now be shown.

The integration onf can be performed by using the identity (2.6.9). This

yields.
I wKZJ (fK)J (FK)ejk3szdk
H —Lf 1 To ;’ > 3 (3.2.2)
“Q.s (K +k3 )
Since we are interested in the value of Hz over the loop, z is set equal to
Q. S.

8 , the radius of the wire.
A contour integration is now performed in the complex E3-p1ane and is

closed in the upper half plane. The result is

I
H F°fKJ (Kfo)J Kf)e-stK (3. 2.3)
Q. s. A

The impedance formula is therefore,

. 2T P oD
Jw fo
Zmo.s. = —%éfj f KJl(foK)JO(fK)e—Kdededyﬁ (3.2.4)
oo

Integration on ¢ introduces a factor 2m. Employing the following identity

Po
jo fJo(ﬁ)K)d/”:%-Jl(Kﬁ)) (3.2.5)
(3.2.4) becomes

)
Z i SL\,'/u / f]&{) AdK (3. 2. 6)

I\g‘ig%uite apparent that if Sis set equal to zero, the integral of (3. 2. 6?7willﬁslot
PEROIN G B e Sie /
C
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convegge. ' Sitting ]ﬂoK=X (3.2.7)
(3. 2.6) becomes
s ]
. . 2 -Rx
Z1nQ. g~ _]w/.é K)‘IT Jl x)e dx (3. 2. 8)
"
where R = — <1 (3.2.9)

R is dimensionless and is the ratio of the wire radius to the loop radius.

Luke (1962) gives the following integral

oQ
1(/4,v,x) :/e'Rxx"J (ax)J, (bx)dx (3.2.10)
o M
Thus, ZinQ.S. = jw,uofowl(l, 1, 0) (3.2,11)
2
. 2 X1
Luke also gives I(1,1,0) = _"“1— [(1_T)K(o(l)'-4E(o<1)] (3.2.12)

where K and E are elliptic integrals of the first and second kind, and

ollz = (1+R‘2/4)'1 (3.2.13)

Collins (1960) gives the self-impedance of a small loop in free space as

%4
Zin = jw"oﬂ)(z-R)[(l- -TZE)K(O(Z)-E(O(Z)] (3. 2.14)
2 RZ 1
where o(2 = (1+4(1_R))' (3.2.15)

These results agree and thus, the quasi-static impedance of the small

loop is equal to the free space impedance, as was anticipated in (3. 2. 1).




19

CHAPTER 4 A FIRST ORDER CORRECTION TERM
TO THE QUASI-STATIC IMPEDANCE;
Eo NORMAL TO THE LOOP

Since the derivation of the quasi-static impedance yielded a result inde-
pendent of plasma parameters, it is desirable to find a first order correction

term. We repeat equation (2.5.29) for the H field.

[’ +x0°N ]ka"IE

(4.1.1)

TR

(atko b+ko c)

If the denominator is divided by long division into the numerator, one obtains

N 2 4 ~)
H = _][Nl+ko NZ](a~ 2 += {az—a})ka J (4.1, 2)

2
Retaining only the zero order and first order terms in ko , (4.1. 2) becomes

N N. bN ~
1 2 —_—_ ] —
' 2 1)]ka J (4. 1. 3)

al

The first term in (4.1.3) is just the quasi-static term that was used in (3. 1.1).

2 - .
Let us call the O(ko ) term HC, the correction term.

That is _
= ko = 1 ==-1=
Hc =i (NZ— 5 kxK °J (4.1.4)
ik {ivst tovie in (4. 1.2) Is just 'C11’ cuasi-strtic term that was uscda in (3. .. 1),
o~
= —2 —_I K K K
H__ ™ LT KPI-K
bdK(K K2+K k 2)(sv’- + C +iK K3(S’n Cos § )] (4.1.5)
-,{(1 RN xnf Os;)‘]ll 1f— o; . 1.

Note that all the plasma parameters appear in this expression.
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Using the expressions for impedance and applying the inverse Fourier trans-
form, we conclude that

2T 0

(V) d> .r
Zin _ J_/_(QJ O 3j [ o) j[K 'DCOS(fu¢)+k3z]Kdefdk3]fdfd;5

corr.
(27}
00 (4.1.6)

Upon substitution and rearrangement, we have

Zin =
corr
2 2TP od 2T 2
‘ 2, K5 +
Jw/,(o Okoj Iaoj KqufK/O) -K_K K- b{KK K ™+K sm; Cos;)
2 2 ,
(2m) > BRmoD (K kg )(Kok3 +K1K )

+jKllK3 Sing - cOs/rl}]ej[K/p Cos (}‘Eé)+k32]de7dk3deg5 (4.1.7)
Again we set z=§, the radius of the wire. Integration on $ is performed
using the identity (2.6.9). It is obvious that only the factor -‘KOKlK will per-
sist upon integration over} because of the Sin7 and Cos; terms in the factor
multiplied by b.

It is at this point that the plasma parameter K. . disappears from the

11

first order correction term to the impedance.

Integration of,ois done using (3. 2.5).

Thus,
(K{ &) 35de1<
Zln = =_]<.o/4,ﬂ ko K K 5 2 (4.1.8)
(K +k 2K . K4K k.9
~dd 0 1 o 3
o0 .
k
) 3sdk
Define 1 = (4.1.9)
2
k3 (k +K2 +[3 K )
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2 -
where B = Kl/Ko (4. 1./10)..
Breaking the integrand into partial fractions (4. 1. 9) is written as

od od
! [f Jk$ [ eJk3£dk3 3
I = dk, - [ — = (4.1.11)
5 ke d 2+K2) 3 2, 622

o6 3 --c(k3

The integral is now in such a form that contour integration can be performed
in the complex k3-p1ane. Assuming slight losses in the medium, so that the

poles are never pure real, we see that

-pKé
I :T‘Iz—[e"KS-f————] (4.1.12)
3 K51 g
00
2. 2 2
-jw ko K. m [T “(KP) -BKE
Thus, Zin = - Folo lfl ,00 [e'KS-—e—————]dK (4.1.13)
c 2 2 B
B -1) s K
Setting Klpo = x (2.8.13) becomes
od
. 3.2 2
' Jw/uoﬂ) ko KlKOTr Jl (x) “Rx e—ﬁRX
ZlnC:- (Kl'K) 3 [e - T8 Jdx  (4.1.14)
[¢] [/] X

where R is defined by (3. 2. 9).

At this point it is useful to introduce the following definition

ko}p ) Z'rr/ﬂo c
o .

= = CAZ< 1 (4.1.15)
CA is the circumference of the loop in free-space wavelengths and 1s very

o] o]

small. Thus, (4.1.14)is
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2 2 >
Zin = -Jw/uofoc)t KlKoTT 1 () [e—Rx emf}RX
c (K.-K ) 2 B
o] 0 X

Jdx (4. 1.16)
1

B should be chosen with a positive real part in order that (4. 1. 16) should
converge.

An analysis of this result will be made later on.
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CHAPTER 5 THE UNIAXIAL APPROXIMA TION;
'EO NORMAL TO THE LOOP

5.1 Introduction
As was shown in the previous chapter neither the quasi-static impedance
nor the first order correction term for impedance were functions of Kll' This

is justification of the argument that the transposed medium need not be used in

the impedance expression given earlier in this report. Kll is the only para-

meter which is a function of the sense of the imposed steady magnetic field, Bo.

2 2
Kl and KO are functions of Y and thus, only functions of Bo.

2
It is most likely that, if higher order terms in ko were calculated for the

impedance, the factor K.. would eventually appear in some or all of the terms.

11

But the fact that the loop is small and only the near fields are required leads to

the conclusion that it would be useful to consider that K11 is identically zero.

There is no reason to assume that, in this event, the result for the loop im-
pedance would not be just as good an approximation, or better, than the quasi-
static approximation.

Setting Kll =0 . (5.1.1)

results in making Ka diagonal matrix. But the most important result is that

the determinant of L is factorable into two simple factors. This permits the

o~
evaluation of the inverse Fourier transform of H yielding a result that is in

closed form and which contains ko .

2

o Tmeac fovrned IO-oastics Tields in the Joitxial leedium
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5.2 The Transformed Magnetic Field in the Uniaxial! Medium

If one sets Kll = 0in (2.5. 8) and solves for the 2-component of -I:I—,the re-

sult is > >
[kaka][KK+Kk -KKko]

~ o 3 170 .

H = > 1 (5.2.1)

z (atko btko c)
2 4 2 2 2 2 2 2
But (atko btko c¢) = - [K +1<3 -K, ko ][KlK +K k3 -KlKoko ] (5.2.2)
o

This result is quite convenient because the second term of the denominator can-
cels with a factor in the numerator.
i[k_Tx-k Ty]

Vad
Thus, H = - (5.2.3)
z (K2+k3Z-K1koz]

P~
Jx is the x-component of the transformed current density. Expressing (5. 2. 3)

“~ Pasd
in the cylindrical Fousrier co-oridinates aid substituting Jx and Jy from (2.6.10)

yields
. ,
. 26l £ 7 (KP K |
H o=—— 5 (5. 2. 4)
2 (K +k,"-K ko)
00 20
1p m w27 (Kf [K P Cos 7’g§+kz
and H, . = 02 J — 5 dKdfdk, (5.2.5)
Zuniax:  (2m) (K74, “-K ko)
<9 0 3

Comparing this result with (3. 2.1), it is seen that

, hm(H \:H (5.2.6)
ko —» o Zuniax. Q. 8.

Examination of (5. 2. 5) shows that it 1s a function only of Kl and not of KO°

This is somewhat disconcerting at first until one solves for Ez in the uniaxial
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case and finds that is is equal to zero. Since the role of K 1is found in (2.1.1)
o
as part of the constitutive relation

D=¢ KE (5.2.7)

it is clear that since Ez=0 (5. 2. 8)
KO plays no role and thus, the fields are functions only of Kl'
5.3 The Impedance of the Loop in the Uniaxial Medium

Upon substitution of (5. 2.5) into the impedance formula (2. 4. 8), one ob-

tains

21 fond 2 20 j[KF Cos (F-g)+ 3Z]defdk3dfd,A

k
K
- T (K
Zinuniax JJJJ f 2 2 2
T(2m) K +k, -K,ko )

3 1

(5.3.1)
Integrating on {using identity (2. 6.9) yields

w K;J (K (K I 3%anax; dead
2 i, o /fjfﬂ‘f el f}# ) “'?’fé (5.3.2)

2
o0 K +k3 Klko )

Again z is set equal to& and integration on g introduces a factor of 2m. The

next integration onlo using identity (3. 2.5) results in

K,ﬂ dek3
Zin uniax. = e /‘éf J 2 (5.3.3)

K+ +k, —Klko)

The next integration is performed as a contour integral in the complex _123—
plane which is closed in the upper half plane. In this integral the poles of the

integrand will never lie on the real axis if there are slight losses in the medi-~
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um, making K1 complex. After integration on k3 is performed

00 — =
2 SVKO-KL
KJ,“Kp e rRo-Ryko
Zin = _]w/uf ™ - dK
uniax. ofo 2 AN
ANK - k
o \ll Kl e}
da ett KgF =
and again setting ﬁ) X

and rearranging (5. 3. 4) becomes

o
7
2 VRJXT(K C “
, . xJ] x)e 1A
Zin = Jw/lf'ﬁ dx
uniax. ofo ¢ 2 27
x -K Cl\.
2 1

where C)\ is defined ky (4.1.15) and R by 3. 2.91. Of course.

(5.3.6) reduces to the free-space 1mpedance of a small loop.

the impedance expression will be made later on in thic study.

5.3 4;

{(5.3.5)

(5.3.6:

asA—#QO

An analysis of
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CHAPTER 6 THE UNIAXIAL APPROXIMATION:
Eo PARALLEL TO THE LOOP

6.1 The Permittivity Matrix for a ?—Directed D. C. Magnetic Field

Up to this point the impedance of the loop has been calculated for the case
of the D. C. magnetic field normal to the plane of the loop.

Let us now assume the same current loop configuration as before, but
assume that E:?Bo (6.1.1)

This case can be represented by interchanging the y-z dependancy of K. Thus,

the ﬁis
. -
K1 O _]Kll
K= | o K. O 6.1.2)
-jK,, O K, ]
oo

6.2 The Transformed Magnetic Field
Again the /z\—component of the magnetic field is needed to calculate the loop

impedance. Rewriting (2.5.10) we have

=~ =l 1%
H=-jL, kxK J 6.2.1)
—_— ,—==_l=== =
L = (kxK kxt+ko I) 6.2.2)

L~ must now be recalculated using the new representation of K from
) . =l i o oomemoprs ot ooest. Galo 1o cuy ooy 1
(6.1.2). The inversion of L is a tedious process at best. This is especially
true in the case when Kll # 0. In view of the argument presented in the last

section, K11 will again be set equal to zero and the impedance of the loop in a
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uniaxial medium will be calculated. Therefore, we set,

1
=1lo K_ ) (6.2.3)
o) o) K

It can be shown that

= Ko 2 4

T= ——“—~29—(a'+ko b'+ko “c') 6. 2. 4)

K."K
1 fo)

where a', b', and c¢' are the same as defined by (2.5.2 ), (2.5.2 v),l and (2.5.2 )

2 2
except that kZ and k3 are interchanged everywhere.

Upon completing the inversion of T and evaluation of H S’ the result is

" ka{KK+K K]K ko}] s

i 2 k k
{a'+ko b'+ko4c‘) Jy{ K o

~ ~
and substituting in the values of Jx and Jy and writing the whole expression in

terms of the cylindrical Fourier co-ordinates, (6.2.5) becomes

2 2 2. 2 2 2
2 - ik “-K . k
. 1P T (K P )K Sln;{K K +Klk3 KK ko }+K cOsﬂf Kk, K Ko} ]
- 2 2 2 2
z (K +k, -Klko]KK Cos's +K Kk, +KK sm; —KKko]

6. 2.6)
The result is clearly more complicated than the case of the D. C. magnetic
field normal to the plane of the loop.
6.3 The!Evaluatioi:of the Impedance inthe Uniakial Medium

Applying the inverse Fourier transform to the expression of (6.2.6) and
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then integrating the 2-directed magnetic field over the loop, one has the follow-

ing integral representation for impedance.

ZJKFCOS;;AH(S

w K ) K

Zin—%j fff f ﬁ (;) Z..
(2m) [K tky -K ko ][KlK COS)<+K K° S1nj tK, k —K K ko ]

3

2 2 2 2 2 2 2 2
K+K k_ - k -
[Smf{Ko R S o}+Kl Cos;’{K +k,"-K ko }]defdk3dfdg§
6.3.1)

As before, z has been set equal to §.

The first integration will be performed on % using the identity (2.6.9). The

result is that

°°°21T

(A.)
2 kS
Zin = ’u"ﬂ’//fﬁ%{ ) 5 I (KL )To(KP) -
2
Sln;{K k21K k3 -K K ko}+K COS)’{K +k, =K ko }defdk dp
—— > > > 6.3.2)
[K™+k,"-K ko ][KlK cOs}‘+KOK sm;+Klk3 -K K ko ]
The next integration is performed on,o using (3. 2.5) which yields
o0 00
' 2[ (" KT 2K P ) KP [Sin® {KK+K1<2KK1<
A 1 EF)e in ¢ 3 TP °}
Zin = /T 2 2 2 '
-0 © [K tky =K ko ]
2 2
+K cosﬂ‘K2+k 2 K.ko }]de dk
1 3 "0 YA |
R 2 . 2 2 2 (6.3.3)
[KIK Cos +KOK Sm}'JrKlk3 —KlKokQ ]

Next, the integral on k3 will be performed by the method of contour integration
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in the complex E3—p1ane. After extracting a factor Kl, the denominator of the

integrand can be factored as follows

2 2 2 . .
[k3 +(K™-K ko )] = (k3+Jm)(k3-Jm) (6.3.4)
J_T__'_Z\
where m=NK -Klko (6.3.5)
2 2 2 Ko 2 2 2
Also [K3 + (K cosf TK Smf —Koko )] = (k3+3n)(k3-3n) (6.3.6)
)74 1
j 2 2 0.2 .. 2 2 .
where n=NK Cos f + K K Sln{ -Koko 6.3.7)
X 2 2mwed
Th Zin = :]_(zu_o_ﬂ)_ KJ Z(K ) e
us; T 0K 1 ﬁ)
1 o "o
(K Sln}'k +K an;frn2 Jk3g K Cosi’e‘]kf
+ 1 dk_dKd4d® (6.3.8)
k +_]m —_]m)(k3+Jn)(k3—jn) (k3-jn)(k3+jn) 3 ; '

Notice that the term multiplied by Coszf in the numerator of (6.3.3) has a fac-
tor which cancels part of the de‘nomina.tor. Notice also the apperance of rn2 in
the first term of the numerator.

The contour of (6.3. 8) is closed in the upper half plane and again slight
losses are assumed to exist in the medium so that the poles, m and n do not lie
on the real axis.

The first term of (6.3, 8) may be broken into partial fractions and, thus,

defining only the k, integral we have

3




o0
2.2 2 .. 2 jk
(Klk3 Sln;+K0m Sln}')e 3gdk3 0
e, ~ 2 2 -
3 2, (0" ) (i + jm) (k- m)
o0
2 .2 2 .. 2, jk.§
. (k3 K1 Sln}'+Kom Sm;)e 3 dk3 .
2 2 . .
-
o0
K, cOs‘}'eJk?sg
. + . .
(k3+jn)(k3-jn) dk3 (6.3.9)

Invoking Cauchy's integral formula, the result is

2 2 2, -mb 2 2 2. -m§
Sinj(—Klm +K m e ™ Sin/f (K m -Kln )e m
L, = 2ml R ¥ Tz
3 (n ~m )2jm (m -n )Z2jm
-né
Kl Cosi{e n
+ . ] (6.3.10).
2jn
Collecting terms we have
-né
2 € 2¢ -mb
_ Cos ¥ Sinfe
L = TrKl[ o + 7 ] (6.3.11)
3
It is clear now that m and n must be chosen to have positive real parts in order
' to insure convergence of the remaining integrals.
l Thus, the impedance formula for the loop in the same plane as the D. C.

magnetic field in an uniaxial medium is

’ 2 2T
: -né& 2. -m&%
. : Jwlao]oo jf 2 Coszfe ? Sin fe m
Zin . o= ——— KJ, (Kﬂ))[ A + — ] de}'
o o 6.3.12)
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and setting K/oo = x, we have finally

2T oD

J‘wluolpo 2 Cosz}'e“n'R S'inzfe_m[R R
Zin = — [le ) ][ " + g ] dxdf (6.3.13)
o ©

K

2 2
and m' = N x _KIC/\ 6.3.15)

R and C)\. are defined as before by (3.2.9) and (4.1.15) respectively.

f 2 2 K 2 2 2
where n' =N x° Cosd + =—x"Sin"§ -K C 6.3.14)
o A

Since m' is not a function of § , integration of ¥ is easily done for the sec-
g y

ond term of (6.3.13). The result is

-2

Jw/ofo T 2. —R'\I xZ-K C*

Zln— f—z—-———zn' dX
o x -K C).
21T°0 f '
-R (Cos +-—— Sln K C

3 ) C f 5 2 .

w/%/aj OS? = dxd$ (6.3.16)
VR —— /

Cosf+-—l- S1n6')—KOC)t

The first integral of this expression is equal to half of the impedance of the
loop in an uniaxial medium with the magnetic field normal to the loop. See

(5.3.6). A discussion of this result will be given later in the study.
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CHAPTER 7 THE EXPERIMENTAL APPARATUS
AND THE MEASUREMENT TECHNIQUE

7.1 Introduction

It is obviously desirable that the conditions that were assumed to exist in
the theoretical derivation of the impedance be met as closely as possible in the
experimental measurements. The plasma should be uniform and the electron
temperature should be quite low. The plasma chamber should be large enough
to accommodate a small loop, but for practical reasons, small enough to allow
the construction of magnetic coils around the chamber for the production of the
steady magnetic field, Eo.

In order that the properties of the medium be well known, the gas used in
the chamber should be pure and free from contaminants. Some method for the
experimental determination of the plasma parameters must be included as well.

One must also be able to vary the plasma parameters (X, Y, Z) throughout
a reasonable range and with a certain amount of indepedance of each other.
Finally, an accurate method of impedance measurement must be provided.

The following sections of this chapter describe in detail the apparatus that
was used to achieve the goals outlined above, and the measurement techniques
employed to determine the plasma parameters and the loop impedance.

7.2 The Brush Cathode Plasma
It was decided to construct a plasma chamber which employed brush cat-

hodes and a brush anode, as described by Persson (1964). The brush cathode
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method was chosen because the resulting plasma exhibits properties that are
desirable for our purposes.

Persson (1964) gives a detailed description of the brush cathode plasma
which will not be repeated here. However, a review of the important plasma
properties follows.

The brush cathode plasma is a beam produced plasma that is highly uni-
form and exhibits low electron temperature. Helium has been used because it
allows the plasma to fill the chamber completely at relatively low discharge
voltages and produces a single electron when ionized. The plasma is steady-
state in nature and recombination processes predominate. Relatively small
tube currents are required to produce a plasma with a wide range of parame-
ters (X, Y, Z). Furthermore, since most of the anode to cathode voltage drop
occurs very near the cathode, the rest of the chamber is essentially field-free.
Since the negative glow of the discharge can be made to fill the whole chamber
beyond the cathodes, the plasma is very well behaved in that there are no
striations or instabilities. The electron density of the beam is several orders
of magnitude less than the plasma electron density so that the plasma is domi-
nated by cool electrons. The negative glow is independant of the location and
size of the anode. This permitted flexibility in the design of the chamber.

The double cathode geometry was used so that the intercathode separation
was small compared to the reaching distance of the negative glow, thus mini-

mizing the non-uniformities associated with electron beam attenuation in the
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gas. The fact that low electron temperatures were obtained supports the con-
tention that the plasma is fieldsfree. The electron density is so high and the
electron temperature so low that electron-ion collisions predominate, while the
electron-molecule collision frequency is relatively low.

A description of the numerical values of parameters will be given later on.
7.3 Construction of the Brushes

The brush used by Persson consisted of an array of finely pointed tungsten
wires fastened to a base plate. All the wires were electrically and mechanical-
ly connected at the base plate by a eutectic solder.

A simple discharge tube employing one cheaply constructed brush cathode
was built to determine if the desirable properties listed by Persson could be
achieved for the chamber size that was needed for our purposes. The cathode
for the tube was made by dropping dime-store pins through a copper mesh
(screen) and then soft soldering the pin heads to the mesh. The anode consist-
ed of a copper ring, and two Langmuir probes were included in the chamber for
plasma measurements.

This tube worked very well initially giving the desired uniform, low tem-
perature plasma, and an appropriate electron density. However, due to the
cheap construction, sputtering became a problem. It was clear that the
brushes to be used had to be constructed of higher quality materials and built
to last many hours without outgassing significantly or being affected by high

tube currents.
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Following Persson, the wires for the new brushes were made of tungsten,
and were 25 mils in diameter and about 1.5 inches long. An etching apparatus
was constructed to point 100 of the tungsten wires at a time. The 100 wires
were mounted on a rotating wheel which dipped them, in sets of 10 wires at a
time, in and out of a solution of KOH and water. The pins which were immers-
ed in the solution completed a D. C. circuit resulting in the etching of the tung-
sten. Because of the rotation of the wheel, the tips of the wires were immersed
longer than the base of the wires. This resulted in an even tapering of the
wires from 25 mils at the base to less than 1 mil at the point. A 20 VDC source
was used and the process of etching 100 pins took about 15 minutes.

Once a sufficient number of pins was etched, they were mounted in a jig of
compressed carbon in which holes were drilled at a separation of 60 mils, cen-
tre to centre.

One hole was drilled for each pin and a total of 1669 pins were used for
each cathode, A thin layer of nickel was electroplated onto a molybdenum base
plate and the blunt tips of the pins. A copper paste was placed on the plate and
the pins, mounted in the jig and seated on the plate, were heated to about
1100° C in a hydrogen furnace. When the assembly cooled off, the carbon jig
was removed leaving the 1669 tungsten pins fastened to the base plate at 60 mils
separation from each other.

The anode was constructed in the same manner using a smaller base plate

and fewer pins. A brush anode provides better electrical contact with the nega-
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tive glow and is assumed to have a larger effective area than a simple plate of
copper.
7.4 The Vacuum System

Before the chamber is filled with pure helium, it is necessary to evacuate
as much air as possible. The vacuum system that was used was capable of
pumping the chamber down to a pressure of 4 x 10_5mm of mercury. Since the
pressures used in the experiment were of the order of 0.5 millimeters of mer-
cury, this represents an initial volume ratio of contaminant (air) to gas (He) of
8 x 10-3%. During the pump-down precedure, it was necessary to outgas the
surface of the glass chamber by using a high voltage sparking coil. As soon as
the pressure appeared to be stationary, the chamber was back-filled with He at
about 1 mm and a discharge current run through the chamber. This resulted in
the cleaning of the cathodes due to ion bombardment and was characterized by
bright, sporadic flashes at the cathodes. When the cathodes were no longer
unstable, the discharge polarity was reversed and the anode was cleaned in a
similar manner. Then the pump down procedure was again initiated and the
whole process repeated until a satisfactory low pressure was maintained. The
duration of the whole process varied from hours to days, depending on the con-
dition of the chamber and its electrodes.

A major consideration of the vacuum system was, of course, the leakage
rate of the chamber. Only very slight leakage could be tolerated. As can be

seen in Figure 1, the leakage rate over a period of an hour amounted to about
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1, 4.4 which represents an introduction of 0. 28% contaminant by volume.
7.5 The Glass Discharge Chamber

The glass discharge chamber was constructed of a cylindrical tube of glass
with a cathode mounted at each end of the tube and the anode at the mid-point
along the axis of the tube as shown in Figure 2. The tube was 3 1/2 inches in
diameter and approximately 15 inches long. The electrodes were inserted into
the tube and supported by metal tabs. which were sprung against the inner walls
of the chamber. The electrical connection from each base plate was passed
through a uranium glass seal to the outside of the chamber. The inter-cathode
spacing was approximately 12 inches and the negative glow of the plasma was
easily made to fill the whole chamber in between the tips of the pointed wires
of the electrodes.
7.6 The D.C. Magnetic Field Coils

In order to produce a steady magnetic field inside and along the axis of the
cylindrical discharge chamber, two identical coils were constructed. Each
coil fitted quite closely around the glass chamber and they were mounted as
close together as was permitted by the glasswork which supported the anode
and the small loop. Special consideration had to be given to heat dissipation in
the coils because they carried currents of the order of 22A, and the heat losses
in the coils were of the order of 500 watts. KEach coil was air-cooled by a
forced air fan.

Figure 3 shows the value of the plasma parameter Y at 1 G Hz produced by
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the coils at the location of the small loop as a function of coil current. The
magnetic field was measured by means of a Hall probe.

The power supply for the coils consisted of a full wave rectifier and a bank
of R-C filters. The current was varied by changing the A.C. input to the rec-
tifier by means of a Variac transformer.

Throughout the experiment the value of the plasma parameter Y was deter-
mined from the D. C. coil current by means of the calibration curve already
shown.

7.7 The Small Loop

The small loop used in this experiment was constructed by forming the in-
ner conductor of a rigid 50 ohm coaxial line into a loop which was then spot-
welded to the outer metal sheath of the coaxial line.

The loop dimensions were as follows. The loop radius, /90, was

/)O = 0.5585 cm (7.7.1)
and the wire diameters, was

$ = 0.0458 cm (7.7.2)
These dimensions were determined by the use of a calibrated microscope.

These dimensions led to a value of the ratio R, given by (3. 2. 9) of

$

2 - 0,0820 (7.7.3)

fo

Since it was important to insure that the plasma did not diffuse to the metal

R

1

sheath of the rigid coaxial line, it was enclosed in a glass tube as shown in
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collapse the ion sheath which surrounds it. In this region, the effective area
of the probe is unknown because of the ion sheath. The current to the probe is
essentially due to electrons and the slope of the line A B yields the electron
temperature.

The slope m is

m = (7. 8.1)

so a very steep slope corresponds to a low electron temperature. Te is the
magnitude of the electron charge and k is Boltzman's gas constant.

As the probe is made more positive with respect to the anode, the i1on
sheath surrounding the probe collapses at C and the effective area of the probe
is equal to its physical area. The probe current at point C is

I=JA (7.8.2)
where J is the current density and A the physical area of the probe, which is
known. But J is proportional to Ne v, where N is the electron density, and v
the thermal velocity of the electron., The thermal velocity is easily calculated
from the electron temperature already determined, thus, only N is unknown
and can be calculated.

Efforts were made to design aridlib?u'il-d 'a logarithmic a;m”!pliﬁ-eri,\ilhich“wbhld
facilitate the display of the probe characteristics on an oscilloscope. However,
the range of measurvable probe current was over 5 decades and the design
problems became too time consuming and the idea was dropped.

The probe that was used in the experiment was the loop itself. It was
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isolated from a D. C. point of view from the r.f. equipment by means of inside
and outside D, C. blocks in the coaxial line. The result was that the only D. C.
path from the loop to the anode was through the plasma, as was desired. A
much smaller probe had been used earlier but Persson (1964) cautions that a
very small probe yields non-reproducable measurements. The loop area was
very nearly 1 cmz, and the Langmuir probe characteristics were indeed repro-
ducable. The loop was cleaned by ion bombardment at frequent intervals during
the series of measurements. Kostelnicek (1964) points out that the better the
probe and anode are cleaned, the sharper the break in the Langmuir curve.
This is important in the accurate determination of the slope and the ""break"
current of the curve, (at ion sheath collapse).

A very sensitive ammeter was used to measure the probe current. The
range of the ammeter was from 10“6 ma to 10 ma. With the pressures and
discharge currents used in the experiments, a probe to anode voltage range
from -30 VDC to +30 VDC was adequate to cover the range of interest.

During the impedance measurements, the loop was maintained at a potential
such that the ion sheath was collapsed.

7.9 The Collision Frequency and the Plasma Parameter Z

Methods for determining the plasma parameters X and Y have already been
outlined. It remains to establish a means of calculating the collision frequency.
The total collision frequency is the sum of the electron-ion collision frequency

and the electron-molecule collision frequency (Balmain, 1963). According to
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Persson (1964), the electron-ion collisions predominate in the brush cathode
plasma.
Balmain (1963) gives the following relations for electron-ion and electron-

molecule collision frequency.

oy 3.62x106Ni 3.3x106T 3/2
. e ,
ei = 372 In [ N ] {7.9.1)
T i
e
v 4
and em = > Vp P (7.9.2)

where Ni is the ion density (which is equal to the electron density), Te is elec-
tron temperature in degrees Kelvin, ¥V is the thermal average velocity of the
electron, PC is the probability of electron-molecule collision (PC = 19 for He)
and p is the pressure of He.in mmHg.

Both electro;x—ion and electron molecule collision frequencies were calcu-
lated by means of the previous formulae and in most cases Vei S>> Yem, except
at high electron temperatures where Yei was q'uite small.

7.10 The r.f. System and the Measurement of Impedance

The measurement of impedance was accomplished by straight forward
slotted line techniques. As will be discussed in the next section, a frequency
range from 500 M Hz to 1050 M Hz was selected for the measurements. A
great deal of care was taken in the construction of the coaxial feed to the small
loop beyond the slotted line. This was necessary because of the nature of the

impedance being measured. Since the loop is very small in terms of the wave-
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length, the loop impedance was almost purely reactive, especially in the free
space case where no plasma existed.

A reference point was established by immersing the whole loop in a bath of
mercury.

A 1200 M Hgz low pass filter was used in the frequency range from
1050 M Hz down to 750 M Hz, and a 800 M Hz filter was used below 750 M Hz.

The frequency was monitored by means of a resonant cavity and the wave-
length was measured by means of the slotted line as a check each time the fre-
quency was changed. A crystal detector was used in the slotted line and mea-
surements were taken at as low a power input as possible without losing the
signal in noise.

Because the reference point of impedance was the shorted loop itself, the
null shift and the standing wave ratio could be plotted on a Smith Chart giving
the loop impedance directly.

7.11 The Range of Plasma Parameters Used

The three basic parameters that could be controlled in this experimental
measurement were r.f. frequency, electron density and D. C. magnetic field.
Very little control was possible over the collision frequency.

At first it was hoped that the electron density could be controlled with a
fair amount of accuracy by changing only the discharge current. This was true
to a certain degree, but it must be remembered that if the discharge current is
increased, the electron temperature would usually increase too. Thus, there

was not a linear relation between discharge current and electror
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was usually able, however, to obtain an electron density within a factor of 1 to
5 of the value that was desired. This was accomplished by running a visual
Langmuir probe test and adjusting the discharge current until the desired
"break'' current was obtained, all the time assuming that the electron tempera-
ture would range between 200° C to 1200° C. The unknown electron tempera-
ture was the variable that contributed to the difficulty of achieving the exact
electron density desired.

A more serious problem arose when there was a non-zero D. C. magnetic
field present. The larger the magnitude of the D. C. magnetic field, the higher
the electron temperature. Thus, even if a desired electron density had been
obtained in the absence of the magnetic field, it would change when the magnetic
field was added. So, although a desired value of Bo was easily set by dialing
the correct value of coil current, it was difficult to obtain the correct electron
density.

A value of BO could have been set, (fixing plasma parameter Y) and then
the tube current changed, thus, changing X. However, this would have meant
that a new set of Langmuir probe characteristics would have had to be deter-
mined for each and every combination of X and Y, which would have been very
time consuming.

To alleviate the situation, the following method was used to change the
plasma parameters X and Y.

First, a desired value of Y was set by setting a current value in the mag-
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netic coils, and fixing the r.f. signal frequency at 1050 M Hz., Then, the dis-
charge current was set to give a desired ""break' current in the Langmuir
characteristic. Once the Langmuir characteristics had been accurately deter-
mined, the exact value of X, Y, and Z were known.

From that point on changes in X, Y, and Z were accomplished by lowering
the r.f. signal frequency 50 M Hz at a time and measuring the impedance at
each of the frequencies down to 500 M Hz. Since X is inversely proportional
to the square of the frequency, an increase in X up to a factor of 4. 41 was ac-
complished by lowering the frequency in steps. Likewise, an increase in Y up
to a factor of 2.1 was possible.

One disadvantage of this method, aside from having to re-tune the r.f. cir-
cuit each time the frequency was changed, was that the value of Z also changed.
But since control over Z was difficult, if not impossible, this method was con-
sidered to be as good as any, considering that only one Langmuir characteristic
had to be determined for a set of twelve different combinations of X, Y, and Z.

The number twelve, of course, is the number of 50 M Hz steps that exist
between and including 1050 M Hz and 500 M Hz.

The numerical range of the plasma parameters achieved was 0 £ X & 15. 65,
0&£Y£2.0,0.00474 Z£0.18. These were not obtained simultaneously, but
represent the maximums and minimums achieved amongst all the measured

parameters.
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CHAPTER 8 THE NUMERICAL INTEGRATION OF THE
THEORETICAL EXPRESSIONS

The derived expressions for the impedance of the loop are in intggralcuic.
form. There are three such expressions. The first is the integral representa-
tion for the first order correction to the quasi-static result when Eo is normal
to the loop, and is given by equation (4.1.16). The second integral is the rep-
resentation of the loop impedance in a uniaxial medium when go is normal to
the loop as given by equation (5.3.6), The third integral is the representation
of the impedance of the loop in an uniaxial medium in which the magnetic field,
Eo’ is parallel to the plane of the loop. This is equation (6.3.16) which con-
sists of a single and a double integral.

It is, of course, desirable_ to study the numerical results given by these in-
tegral representations. Thus, programs were written to evaluate the integrals
numerically using a high-speed digital computer (University of Illinois IBM
7094).

There is a marked resemblance, as might be expected, in the three integ-
rals. They all involve Bessel Functions of the first kind of order one, as well
as exponential functions. They all involve integrals from zero to infinity as
well, which posed the problem of accuracy and convergence in the numberical
evaluation. For this reason an attempt was made to find equivalent expressions
in the form of definite integrals. This attempt was successful in the case of

equation (4.1,16), the first order correction term to the quasi-static impedance.

-
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(4.1.16) is repeated here.

. 2 2
7i _ _Jw/(oﬁ)cA KlKoTr Jl (X)[ -Rx -BRX] q 8. 1.1
Yeorr. KI-KO 2 '€ T x (8.1.1)

8]

Bateman (Vol. no. 1, p. 183, 1954) gives the following formula.

o0
. 4
pt .
1(p) :Je Jl (1) 1[ (1+Cosg) [N p+2(1-Cosg) -pl dé  (8.1.2)
o t (-]
. 2
. “jop FCAK K T 1
Thus, Zin = KK [I(R)-EI(ﬁR)] (8.1.3)
After setting 0= g/2 (8. 1. 4)
/2
and defining VY ®) :'/‘ Cos2odR%+4 SinZ0 do (8. 1. 5)
o] -
(8.1.3) becomes P
. -j‘w/uofoch K1K02 1
Zin = KK Y®)-5 Her)) (8.1.6)

This is the definite integral expression that was used for the numerical
evaluation of Zin .
corr

Equation (5.3.6) was programmed as it stands and equation (6.3.16) was
programmed to evaluate only the double integral, because the single integral is
equal to one half of the integral given by (5.3.6), as will be discussed later.
The program technique used was COMPLEX FORTRAN which gave the results
in complex form directly. The numerical method used was Gauss-Legendre

quadrature.

It should be noted, as mentioned before, that if R were set equal to zero,
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each integral would diverge. The fact that R is a small number is cause for
special care in the evaluation of the indefinite integrals.

Thus, equation (5.3.6) was evaluated by integrating numerically over in-
tervals of five, each interval being divided into at least fifteen segments with a

4
specified desired accuracy of 1 part in 10" for both the real and imaginary part

of the intégral. This routine was repeated,> (0to5, 5to 10, 10 to 15, etc.) un-
til the numerical contributions of the last interval contributed less than 1 part
in 104 to the total integral. This resulted invariably in the upper limit of the
integral being 75. 0. The upper limit was independant of the plasma parame-
ters used.

The evaluation of (8.1.6) to give ZinCor | was accomplished by integrating
from 0 to m/2 using at least fifteen divisions, and requiring an accuracy of 1
part in 104 for both the real and imaginary part of the integral.

The double integral of equation (6.3.16) was programmed to integrate
from 0 to 7 in 10 divisions and from 0 to 30 in 96 divisions. It was found that
when Kl was set equal to Ko’ in which case (6.3.16) and (5.3.6) are identical,
that the numerical results of the double integral routine agreed with the results
of the numerical integration of (5.3.6) within less than 0.1%. Thus, the upper
limit of 30 on the indefinite integral was deemed satisfactory.

The programs were designed to accept plasma parameters X, Y, and Z as

well as w, Po’ and § as input data and each program yielded the impedance re-

sult, normalized to 50 ochms.
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The complete calculated results, presented later in this study, consumed
about five hours of computer time. Equation (8.1, 6) took 0.8 sec/run; (5.3.6)
took 10 sec/run and the double integral of (6.3.16) took 30 sec/run, a run be-

ing one set of input parameters, (w, /oo’g’ X, Y, Z).
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CHAPTER 9 A DISCUSSION OF THE DERIVED
THEORETICAL FORMULAE

9.1 The First Order Correction Term, §O Normal to the Loop

Equation (4,1.16) for the first order correction term to the quasi-static

impedance is repeated here for convenience,.

% 2
2
- J. . -
Zin = “pofO 157 [T [e™R* . 2 F3RX] dx (9.1.1)
corr. K.-K 2 B s
1 o o X
2
where " = Kl/KO (9.1, 2)
The following observations are pertinent:
. . . . 2
(i) chorr. is propertional to C,\ , a very small number.

(ii) If there are any losses (Z#0), K, and Ko are complex which results

1
in a contribution to the real part of ZinCorr . (Values of Z=0.01
were common in the experimental plasma). These slight losses
contribute only a very small real part.

2

(iii) By examining (9. 1.2) one sees that it is possible for B to be nega-
tive, for some values of X and Y, even if Z is set nearly equal to
zero. This would cause B to be almost pure imaginary and thus,
would contribute to the real part of Zin .

corr,

Assuming for the moment that the losses in the medium are zero, the

2
region in which B~ is negative is shown in Figure 6b. This region is described

by X< 1, Y1, Y2> 1-X and by Xp 1, Y?» 1 and is referred to by Bal-
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main (1963) as the hyperbolic region, because the source-free wave equation

is hyperbolic for those combinations of plasma parameters X and Y. Thus,

we expect a contribution to the real part of Zinc .in the region (hyperbolic)

orr

2
where B is negative over and above the contribution due to slight losses in the

medium (Z#0).

(iv)

Assuming slight losses which implies

uee 1 (9. 1.3)
2. 1.v°.X
then R (9. 1. 4)
(1-Y%)(1-X)

It can be seen from (9. 1. 4) that as Y2 —» 1 in the hyperbolic region,
[32 —> .wQ for finite non-zero X. This is the point at which we
would expect the largest contribution to the real part of the loop im-
pedance.

As will be seen in the numerical results, the largest contribution to
the real part of the total impedance occurs when Y* 1,

Note also in (9. 1. 4) that when Y€ 1 and X is very large, (not in the

hyperbolic region), that {32 —> and thus, there is a significant

1.-Y2
contribution to the imaginary part of Zin .
corr,
WhenK, = K =1, Zin = 0, and the loop impedance is just the
1 o corr.

free space impedance predicted by the quasi-static theory.

9.2 The Loop Impedance in a Uniaxial Medium; —BTO Normal to the Loop

Equation (5.3, 6) for the loop impedance is repeated here for convenience.
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dx (9. 2.1)

fZ 21
-R¥ x -K CA.
7 B le X)e

1u.nlax 3/4010

The following observations are pertinent.

(i)
(i)

(iii)

(vi)

(vii)

As C\ —> 0, Zin . _—> Zin for finite K._.
uniax free space 1

Unless slight losses are assumed to exist, K, is pure real and

1
. 2 2
there exists some value of x such that x = chll (9. 2. 2)

The assumption of slight losses (Z#0) assures that the integrand of

(9. 2. 1) is always finite and produces a contribution to the real part

of Zin ., ,
uniax
In the regions where K1 is large and negative, the only contribution
to the real part of Zin ., is due to the slight losses.
uniax

When Kl is positive, (Figure 6a), there will be a contribution to the
real part of Zin . and this contribution will increase as K. in-

uniax 1
creases.,

The greater the deviation of K, from unity, the greater the deviation

1

of Zin . from the free space impedance.

uniax
For X>» 1 the general behavior of the uniaxial impedance is the
same as the behavior of the quasi-static impedance with the first
order correction term,
The factor Ko does not appear in this uniaxial impedance expression

because, as was pointed out earlier, the 2-component of the E field

is zero.
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(viii) When K. =1, i.e, X = Y =0, then Zin ___ = Zin .
1 uniax free space
9.3 A Note on the Comparison of the Quasi-Static Impedance and the
Uniaxial Impedance Results
As noted before,the first order correction term to the quasi-static im-

pedance derives its characteristic from the behavior of B

2

where 62 = Kl/Ko"-—l-‘XZ;X—— (9.3.1)
(1-Y")(1-X)
when 0€ Z2<C1.0 (9.3.2)

The uniaxial impedance formula derives its characteristics from the behavior

of K. where
1 2
gl—Y "X

K
(1-v%)

1 (9.3.4)

It is seen that these factors are very similar for small X, but each factor
contributes the opposite type of behavior for X € 1. For example, when
X<1, and Y2> 1-X the first order correction term has a real part due to the
negative value of Bz, But when X€ 1 and Y2> 1-X, the uniaxial impedance
has no real part, except that part due to slight losses (Z#0). However, for
X® 1 a contribution to the real part of both expressions occurs for Y > 1 and
does not for Y& 1.

9.4 The Loop Impedance in an Uniaxial Medium; Eo Parallel to the Loop

Equation (6.3.16) is repeated here for convenience.
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. Jw/‘ fo le (x)e “R¥ix-K 12
Zin un1ax— fx K CA

2T o

A/[ Cos}’+1—<—81nf KCA

(9.4.1)

The following observations are pertinent.

(i)

(i1)

(iii)

(v)

The first integral of (9. 4.1) is equal to 1/2 the impedance of the
loop in an uniaxial medium where the magnetic field is normal to
the loop, as can be seen from (5. 3.6).

When Y=0, K1=KO and the double integral simplifies to a single in-
tegral which is equal to the first integral of (9.4.1). Thus, as is
certainly expected, both uniaxial results are equal when Y=0.

When X=Y=0, KO:Klzl and a free space impedance formula results,
as expected. This result has a very small real part due to Ckz but
is essentially the free space result.

In the double integral there is a contribution to the real part of the
impedance when KO is positive but this is small because C/lz is
small.

The factor Ko/Kl appears under the root sign which contributes to

the real part of the impedance when the plasma parameters fall in

the hyperbolic region as outlined before.
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(viii)

62

Setting Z#0 (slight losses) contributes to the real part of the imped-
ance.

In general, the impedance of a loop in a uniaxial medium in which
the magnetic field, -1_3—0, is parallel to the loop, is a much more com-

plicated function of the plasma parameters than for the case where

Bo is normal to the loop. We would, therefore, intuitively expect
the plasma to affect the loop impedance in a more complicated fash-

ion in this orientation as compared to the first orientation.
Ko
The larger the deviation of Ko and K1 and 8 from unity, the larger
1

the loop impedance should deviate from the free space impedance.
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CHAPTER 10 THE NUMERICAL RESULTS OF THE
EVALUATION OF THE
THEORETICAL FORMULAE

10.1 Introduction

In the experimental measurement program, the r.f. frequency was changed
in order to effect a change of plasma parameters. This was done for practical
reasons as was explained earlier.

Thus, the parameters X, Y, and Z changed simultaneously.

It is desirable to study the theoretical behavior of the loop impedance un-
der more controlled conditions, where only one plasma parameter (electron
density, magnetic field, -P:O, or collision frequency) is varied while the others
are kept constant, as well as the r.f. frequency, w. For this reason a com-
plete set of computer calculations was performed in which the r.f. frequency
was set at | G Hz and the loop impedance as a function of X was calculated for
a fixed Y and Z.

A value of Z=0.01 was chosen throughout because it was of the same order
as the values of Z attained throughout the measurement program.

Eleven different values of X and eleven different values of Y were used in

the computation. They are

X = (0, 0.5, 0.75, 0.9, 1.0, 1.1, 2.0, 5.0, 10.0, 40.0, 100.0) (10.1.1)
and
Y = (0, 0.707, 0.9, 0.95, 0.999, 1.0, 1.01, 2.0, 5.0, 10.0, 20.0) (10. 1. 2)
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The results of these calculations are shown on the Smith Charts of this
chapter,

10.2 Results When 73_0 Is Normal to the Loop

Figures 7 to 17 inclusive show the numerical results of the computation of
the loop impedance. The quasi-static result (free space) plus the first order
correction term is plotted as well as the result calculated for the uniaxial medi-
um for the sake of comparison. They are labelled Q.S, and U. respectively.
The impedance marked F.S. occurs when X=0,

Note that for Y £ . 95 there is a negligable real part to either impedance.
Further more, in both cases, the theoretical loop impedance is essentially
that of free space unless X is very large. As X increases, the impedance
locus sweeps along the edge of the Smith Chart and this sweep is invariably
greater in the case of X=100 in the '"quasi-static plus first order correction
term' impedance than for the uniaxial impedance,

For 0.999 ¢ Y£ 1,01 a real part to the loop impedance appears in both
cases. This real part appears at Y€ 1 because Z#0. This real part is larg-
est in the uniaxial impedance and only moderate values of X (say X=5) are re-
quired to yield a significant real part, On the other hand, X must be greater
than at least 40 before any significant real part is seen in the '"quasi-static
plus first order correction term'' case, Also in the latter case, of XL 10,
the impedance is essentially that of free space.

For 2.0 € Y& 20 the uniaxial formula predicts essentially free space un-




B, 65

Nt

—_

O.14
0.73

0.3¢

0.3
0.37

10

023 0.26

0.2

0.4

20

(1]

¥

1.0




19|
0,
‘;, O.14 Q.s
o3¢ 0.3 Uo
. Q
== ? Osg
o 70 )
< 9,
oy )
3y
\ F.S.
°.,‘
0. 2
Yo
Q,
(]
2
0.4
% °
'
?% ]
0.
Q
v\ oXe
o\ %
)
3> Q
> b2 9'3':'
»
o
o
> e
\
» °
el
2%
o TS Te= JEH4 of 148 olo
.
2.0 -
=
.
-—0- L g . o & -o—-—_0
a b
A i [ 1 1 1 i 1 I - l_,_l_,,_;_» X

1.0 '2.6 5 10 40 100

Figure 8 Calculated Loop Impedance; -Eo Normal to Loop

> 0
o~
o

0
V




2.0

1.0

Figure 9 Calculated Loop Impedance; Bo Normal to Loop

1l 4
0.}
3 O.14 Q.SO
0.37
0.3¢ 78 U
o .
i o0 q“ o, /.\
» ?0 . \-—/
/06 v %
23,
/0, [ ¢
° FS.
e
0.2 | R
Je
by Q
X
."I
0.4
v,
o <
oXo
()
02 ¢
oxe
ARAS
A )
0
4 o2
[5) o
\> .o .':.
O.’ Q "
>
>
Y o
Oxn
> y 2\
3 \
38
b ¢ 3
0
—
X\ oLl
X0 w2
Ex 7
> X \
(=]
ST TeeHR S aEs of 1A 18 ole
.
.
° >—a ° ° ° ° . o
g *—o¢—o \ g - o L -
1 | I 1 1 i ,‘ ! g | i
ra > g~ »

2.0

5 1o 40 1o




2.0 -~

] 3
S.
0.13 .
0.
PXY) g o U.
b - th »
Q
1) )
/00 /00 oQ,,
< 3
fo F.S.
2,
‘0
P
(%3 ~ -)(,
: »
o
e &
."l
0.4
% o
‘o
QX%
)
Q-
Q
v\ oX©
°\ %
X
) -/
X o A
o)\ -\ ®
*3
o
P%w
P) =y
\
» a
elo
s
ERENE N ¢ of THS olo

*
L J
[ ]
)
b

"“'L,—-J—f—l—4—-‘—4-—4->><

2.05 lo 40 100

Figure 10 Calculated Loop Impedance; -ﬁo Normal to Loop




Q
oX®
%,
0.4
&
2
o @
X'
o
Q
0.8 &
%
w\ 29X
O\
)
o
A
o\
(*) [+) P\
- *
v Y]
6
o
X 0}f
5 '55
55 ¢ 3
> o
3 % \‘-',',’, »
) P38
2g "
X
o o -] O
S O o o] 1= o M 2 I ), &f 4 o0
.
.
2.0 ~
-
=
-
1-0 L4 A A A g & L 2 > 2 ——
.
-
=
-
1 1 1 A l PPN BN |
Lol ﬁ—l'_f‘_l_b

2.0 5

10 40 |00

X

Figure 11 Calculated Loop Impedance; Eo Normal to Loop




™
o.12 o3
oM Ote
.30 [-% )
i 03¢ 04y
»
L © Qg 2
3 ol % 3
N v, 2,
A o3
& F. 5.
. q,.
(-3 1 L)
% o
X’
vl
0.8
‘o Q
oX'o
%
Q
w\ oX<
°\%
X
) °
0) A W
7 ()
>
* .
o
o\f
% 2
\
4 ®
elo
M
- P
S s =N Y A 3 oto

Z.O —

Figure 12 Calculated Loop Impedance; -B-o Normal to Loop

0
)




5
F.S.
oq’
)
0.4
»
o 4
oo
()
0.8 >
2
o
% 2\
o
a2
A%
() Q A4
7, 4 - *
o
€3
o
Ok
N A%
\
) )
" o
%%
R o Rl
29 N o
ps
T ! RO Q o
o © ol |- i a1 3 T+ 3 Q f /S o.°
.
.
2.0 |-
-
=
o ob o o "
1.0 - - y S .
.
-
-
-
1 1 1 1 1 1 1 ' <
n gzl g L o\ g 1 >

1.0 2.05 1o 40 100

Figure 13 Calculated Loop Impedance; _Bo Normal to Loop




- 3
3
O.14
| [ ™) o ay
p Q
p—— g » Qe
-~ () Q
N ), Q::’
% FS
- q'.
o Y 23
EA o
g
0N
)
h ] Q
X'
%
Q
AR A
*\*%
s
3 [4
3\ \ %%
®
o
3 e
]
)
i3
=3 3 < olo
L]
{
1.0
S
1 A 1 'l b L A ' PO B W3 | i ’ X

0 205 10 4o 100

Figure 14 Calculated Loop Impedance; Bo Normal to Loop




_ -
0.13
0.14
0.37
] 0.3¢ 0.3
o qQ
3s
] i %
/ ?0 o-’q
v 2,
—— y o,
-, So % F,S.
<
? q’o
oL 3 o U.
S, X
o
/g
>
&
o> Q.5
o Q
eXN'o
Y%
(8
o
b2 OX*.
o 2\ %
)
0
o °
v
! A X%
2, - s
>
*3
B
s, o1%
) 4]
\
G 5
elo
2%
20 X
> N
2 A =3 ! SRS 2 "8 olo

o
Ul
1!
[
$
)
¢
’
'S
’
t

2.0 =

1.0

1 1 L 1 L i i 1 I .’ ' , t’ ‘ ’ ‘ > X
1.0 2.0 5 1o 40 100
Figure 15 Calculated Loop Impedance; Bo Normal to Loop




{00
2.0

1.0

Figure 16 Calculated Loop Impedance; Eo Normal to Loop

[ 2}
O.1q
[-%
J o3¢ o.1y
b poy a »
—_—
o] ,o
- 3 ) q,)
y o)
R & a, 654
D o X
(%3 ~ .g"
% .
'y
(4
&
0.4
%o (4
Q"a"o
A/
v\ oX¢
o .n.’
ck
\2 (4
AREAL
p) o (]
*3
o
o\f
.'-‘.a
\
g o
ol®
2%
3
o T 3 of TR ole
] I L 1 i A l TR N L: l: 1 » X

1.0

2.0 5

|0 40 100

’g[){

74

A
V




. B 75
- - A
0.13
0.37 %4
0.2¢ O/s
b
1 %0 Q35 % /'\
o~ 1) OJ‘ \-/
v 9,
I ~ %%
0, $o f =
7 3 -3,
o NV
02 R 2
NN U
; (4
'y
(]
%, 25
0.4
S % 9
eNo
%
O
oxe
% g
0
A.o
o
\> 99'.
0! © ) Lad
y ~
o
*3
]
S - A\ o\%
0 B\
\
.'0 ?
-3 o
5 3%
20 Q
o
Mo Y (Y] 147 o e eloe
L]
400 . g —o4-» - L g ———o o—
o > —o4o

2.0 |~

1.0

1 i | ] 1 i i A [1|’|,_|4| > X
1.0 2.0 5 10 40 Ioo

Figure 17 Calculated Loop Impedance; Eo Normal to Loop




76

less X is very large. This is because the factor Kl is essentially equal to one,
2 . .
unless X is very large, and the term ch’\ is small and contributes little
change from free space. The case of the '"quasi-static plus first order cor-
. C s 2 1
rection term'' is different, however, because for large Y, B —=>- -}? thus con-

tributing a real part to the loop impedance which varies as X varies. For both

formulae X must be larger than 10 to cause any significant change from the

free space value of loop impedance.

10.3 Results When Eo Is Parallel to the Loop

Figures 18 to 28 inclusive show the numerical results for this case. As
was énticipated in Chapter 9, the loop impedance in this case exhibits a more
complex plasma parameter dependance. The impedance is essentially reactive
unless the plasma parameters fall inside the aforementioned hyperbolic region
of the (X, YZ) plane. However, relatively small values of X are required to
cause a significant change from the free space value of impedance.

For Y¢€o®. 95 the impedance locus consists of a loop which returns to the
pure reactive edge of the Smith Chart when X 21, except when Y=095 and
X=100, in which case there is a small real part to the impedance, due to the
factors K. C 2 and K C 2.

17A o A |

For 0.999€ Y £ 1. 01 this loop becomes closed very tightly for X £ 1 and
then, for X377 1, the real part of the impedance increases with X to an rela-
tively constant value when X 210.

For Y 2 2.0 the impedance locus becomes more complicated and exhibits
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the largest real part at X=5. The behavior of the impedance locus in indeed
2
unusual in this region of the (X, Y ) plane. This is because the impedance is a

K

[ .
1’ a.ndK combined.

function of K , K
© 1

10.4 Summary

Keeping in mind the range of plasma, parameters attainable in the mea-
surement program (0 £ X £ 15, 0 £Y £2.0) and remembering that these ranges
were not attainable simultaneously, one can anticipate the following results of
the measurement program.

First, for Eo normal to the loop. the measured impedance should be
essentially the free space impedance, except when Y 1.

In the case of Eo parallel to the loop, one would expect to encounter unus-
ual impedance loci when the plasma parameters fall in the hyperbolic region
and much smoother behavior and smaller real part to the impedance when out-

side the hyperbolic region.
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CHAPTER 11 THE RESULTS OF THE
EXPERIMENTAL MEASUREMENT
OF THE LOOP IMPEDANCE

11.1 Eo Normal to the Loop

Figures 29 to 36 inclusive show the measured impedance of the loop in
the plasma when Eo was normal to the loop and under various combinations of
w, X, Y, and Z. It should be remembered that the r.f, frequency was changed
from 1050 M Hz to 500 M H in 50 M Hz steps in order to vary X and Y. The
theoretical impedance, as calculated by the computer for the same values of
W, /Do’ S, X, Y, and Z, is shown for purposes of comparison. The measured
curve is labelled MEAS.

As was anticipated in the discussion of the theoretical formulae and their
numerical results in Chapters 9 and 10 the measured impedance was essential-

* 1, All of the null-shifts measured on

ly that of free space, except when Y
the slotted line fell within 10% of the predicted theoretical null-shifts. The
measured real part of the impedance was usually higher than predicted by the
theory, which might be expected due to the relatively high standing wave ratio.
It is assumed that some r. f. heating of the plasma occurred. Every effort
was used to keep the input r.f. signal to a minimum without losing the nulls in
noise.

Figure 31 exhibits increasing real part below 900 M Hz, in which case X

is increasing to the largest value achieved in the measurement program. It is
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exhibiting the kind of behavior one would expect if X were large and Y were
greater than 1. At 500 M Hz, Y=0.95. This is the only case for this orienta-
tion in which the measurements show any significant deviation from the theory.

In Figure 33 and Figure 35 the theory predicts an increase in the real
part of the impedance as Y passes through Y=1. It appears that this increase
has been detected in Figure 33 which was marked by a drop in VSWR from
over 12 to about 8 at Y ¥ 1,

This is not the case in Figure 35 where the predicfed real part is negli-
gibly small and there was no noticeable drop in VSWR at Y * 1.

The remaining Figures show an excellent agreement with the theory,
which predicts free space impedance and negligible dependance on the plasma
parameters. It 1s felt that the qualitative and quantitative behavior of the mea-
sured impedance agrees well with the theory for this orientation.

11.2 EO Parallel to the Loop

Figures 37 to 41 inclusive show the measured loop impedance when Eo
was parallel to the loop and under various combinations of w, X, Y, and Z. A
brief glance at the Smith Charts shows that the quantitative behavior of the
measured impedance for this orientation does not agree as well with the theory
as it did for the first orientation. However, note that when the theory predict-
ed a smooth impedance locus, as in Figure 37, and Figure 41, the measured
impedance loci were indeed smooth and the general shape of the theoretical

loci was reproduced in the measurements. On the other hand, when unusual




877 £ X< 3.8
<

YZ A .544 < /162
.00 bb44 24 .01392

J/0S0 2 4. 7 500
2.0 - /jl;"?

1.0 | /

1 i 1 | ] 1 1 L 1 l 1 N 1 A 1 > X
1.0 2.0 30

Figure 37 Measured Results Compared to Theory;
}_30 Parallel to the Loop, No. 1

23




2.0

1.0

.309 < X <1.37
.57 £Y< 1195
Lo04b £ 2 < .00
/050 7 4, = So0
¥
R 1 1 J > A i S ‘ > X
1.0 2.0

Figure 38 Measured Results Compared to Theory;

1_30 Parallel to the Loop, No. 2




> £

Y 952 <Y< 2.0
, 0052/ <L 2 £ -0109
/OS0 Z ‘LH =2 Soo

2.0 2

1.0 Z

1 1 1 1 1 1 1 1 , > X
1.0 2.0

Figure 39 Measured Results Compared to Theory;

_Bo Parallel to the Loop, No. 3

101

24




1.0

i L 1 | 1 i i A ' » X

1.0 2.0

Figure 40 Measured Results Compared to Theory;

BO Parallel to the Loop, No. 4

N
A




103

Y@

M
v

YZ‘ .039 £ X
s £ Y
o018 <%
2.0 -
I /050 2§ >
]
2
1.0
1 L § | 1l 1 1 1 i ,

Figure 41 Measured Results Compared to Theory;

Eo Parallel to the Loop, No. 5




104

impedance loci were predicted by the theory as in Figures 38, 39, and 40, i.e.
when X and Y fell in the hyperbolic region, the measured loci exhibited unus-
ual behavior as well. The qualitative behavior of the measured impedance
agrees well in some cases, and not so well in others.

It is clear, however, that the measured loop impedance for this orienta-

tion was indeed plasma dependant.
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CHAPTER 12 CONC LUSIONS

12.1 Eo Normal to the Loop

The loop impedance was derived in two different ways. The first was
using the quasi-static approximation, which yielded the free space result, A
first order correction term was a functior of both Kl and Koa The second
method was to consider the medium to be uniaxial, which resulied in a simpler
derivation and the impedance turned oat to be a function of Kl’ but not KO.

It would be helpful to krnow which approximation corresponded best with
the measured loop impedance. Because both methods predicted essentially
the free space impedance for the range of plasma parameters attained in the
measurement program, no conclusive statement as to which approximation is
better can be made.

However, the following conclusions can be drawn.

(i} Both approximations predicted essentailly the free space result for
the plasma parameters used and the measured results verify this
fact in all but one case (Figure 31); (the behavior of the impedance
followed the behavior predicied for X>> 1, Y 2> 1 although Y was a
little iess than 1.

9

(i1) No distinction betweer. the "quasi-static plus first order correction
term' method and the uniaxial method could be made from the mea-

sured results.
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12.2 Eo Parallel to the Loop

For this orientation, the loop impedance was calculated under the uniaxial

approximation.

The following conclusions can be drawn.

(i)

(i1)

(iii)

(iv)

(v)

{vi}

The impedance of the loop in this orientation is a much more com-
plex function of plasma parameters X and Y than for ‘Eo normal to
the loop.

Moderate values of X and Y are required to px\'oduce a loop imped-
ance which is significantly different than the free space value.

The measured loop impedance locus was smooth in cases where the
theory predicted a smooth locus.

The measured impedance locus was not smooth in cases where the
theory predicted a locus that was not smooth.

The qualitative behavior of the measured smooth impedance loci
corresponded well to that of the theoretical smooth impedance loci,
and the quantitative behavior agreed fairly well (within 15% as far
as null shifts were concerned).

Qualitative agreement of the theory and the measured values was
not good in the case of the unsmooth impedance loci, although qual-
itative agreement was better, and sometimes was excellent from a

local standpoint. (Figure 38).
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12.3 General Conclusions

By comparing the results of this study to those of Balmain (1963), one
can conclude that a '"'short magnetic dipole'" is affected by an anisotropic
plasma to far less a degree than the short electric dipole.

The loop impedance measurement program corroborated the gross be-
havior predicted by the theory. In several instances (particularly for go
normal to the loop)} the measured results agreed very well.

The impedance formulae are presented in a relatively simple form and
the general behavior of the impedance as a function of w, '00, S, X, Y, and Z

is displayed in these formulae in a rather simple fashion.
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